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In two recent papers [1,2], Drs. H. Herwig and

O. Hausner dismiss ‘‘almost all’’ recent studies that

claim special effects for flow and heat transfer through

microdevices. They find the approach in those studies

misleading and argue that existing observations in mic-

rodevices can be explained by merely rescaling the tra-

ditional models routinely used for macrodevices. Herwig

and Hausner suggest that the same equations, properly

non-dimensionalized, should be used for both micro and

macrosystems. In Ref. [2], Professor Herwig states

emphatically and in capital letters, ‘‘IN A NONDI-

MENSIONAL FORM ALL SPECIAL ‘‘MICRO-EF-

FECTS’’ WILL TURN OUT TO BE SCALING

EFFECTS WITHIN A CONTINUUM THEORY

EQUALLY VALID FOR MACRO AND MICRO

PROBLEMS.’’

In this Technical Note, we argue that traditional

treatments of transport phenomena may not be appro-

priate for certain situations involving microdevices. The

simplistic dimensional analysis approach advocated in

[1,2], though not incorrect, does miss important physics

and is therefore misleading. We first start by defining

microdevices and what we mean by traditional modeling

of mass, momentum and heat transfer in or around

conventional devices. We then describe the conditions

under which non-traditional modeling of transport

phenomena may be needed. Finally, we list the available

alternative modeling tools. The focus here will be on

fluid transport, but similar arguments can be made for

solid transport, for example heat conduction through

solid media.

Microelectromechanical systems (MEMS) refer to

devices that have characteristic length of less than 1 mm

but more than 1 lm, that combine electrical and me-
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chanical components, and that are fabricated using in-

tegrated circuit batch-processing techniques. The crucial

issue here is the small length scale of microdevices and

what that might imply about modeling transport phe-

nomena.

Fluid and heat flows in conventional macrodevices is

traditionally modeled using the principles of conserva-

tion of mass, momentum (Newton�s second law), and

energy (first law of thermodynamics). Additionally, all

processes are constrained by the second law of thermo-

dynamics. Those principles are typically expressed in the

form of partial differential field equations, where the

macroscopic quantities of interest such as velocity,

temperature, pressure, etc., depend on a continuum

space and time. The first principles, as expressed to

describe fluid-transport phenomena in conventional

devices, are collectively called the Navier–Stokes equa-

tions, a system of non-linear partial differential equa-

tions subject to a sufficient number of initial and

boundary conditions, the latter is typically in the form of

no velocity slip and no temperature jump at a fluid–solid

interface.

There are three fundamental assumptions that must

be satisfied in order for the Navier–Stokes equations to

be valid:

• The Newtonian framework of mechanics––which

specifies that mass and energy are conserved sepa-

rately and that, in an inertial frame of reference,

the sum of all forces is equal to the rate of change

of momentum––is valid.

• The continuum approximation––which assumes that

space and time are indefinitely divisible continuum––

is applicable.

• Thermodynamic equilibrium or at least quasi-equi-

librium––which permits linear relations between

stress and rate of strain and between heat flux and

temperature gradient––is assumed.
erved.
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Fluid isotropy and stress tensor symmetry are also

typically, albeit not always, assumed. Violation of any

one of the three assumptions listed above invalidates the

Navier–Stokes equations and alternative modeling is

then called for. We elaborate on the three assumptions

in turn.

Newtonian framework: The fluid motions under

consideration are assumed non-relativistic, i.e. their

characteristic velocities are far below the speed of light.

Thus, mass and energy are not interchangeable and each

is separately conserved. As long as we are not dealing

with atomic or subatomic particles or, at the other ex-

treme of length scale, with stars and galaxies, the New-

tonian framework is an excellent modeling tool for most

problems in mechanics including those dealing with

microelectromechanical systems. Quantum and relativ-

istic mechanics are clearly beyond the scope of the pre-

sent paper. Therefore, the Newtonian assumption is one

that we no longer have to revisit for the rest of this

Technical Note.

Continuum model: In both solid and fluid mechanics,

the continuum approximation implies that the spatial

and temporal derivatives of all the macroscopic depen-

dent variables exist in some reasonable sense. In other

words, local properties such as density, velocity, stress

and heat flux are defined as averages over elements

sufficiently large compared with the microscopic struc-

ture in order to guarantee a sufficiently large number of

molecules inside each fluid element and thus to effect

molecular chaos, but small enough in comparison with

the scale of the macroscopic phenomena to permit the

use of differential calculus to describe those properties.

The continuum approximation is almost always met, but

exceptions do exist. The resulting equations therefore

cover a very broad range of situations, the exception

being flows with spatial scales which are not much larger

than the mean distance between the fluid molecules, as

for example in the case of rarefied gas dynamics, shock

waves that are thin relative to the molecular distances,

and some flows in micro and nanodevices. We will de-

scribe later the conditions under which the continuum

approximation fails for certain minute devices.

It should be emphasized that the continuum ap-

proximation in and by itself leads to an indeterminate

set of equations, i.e. more unknowns than equations [3].

To close the resulting system of partial differential

equations, relations between the stress and rate of strain

and between the heat flux and temperature gradient are

needed. At least for compressible flows, two equations of

state, relating density and internal energy each to pres-

sure and temperature, are also required. The fact that

the continuum approximation does not necessarily lead

to the Navier–Stokes equations is a subtle point that is

often confused in the literature including Refs. [1,2].

Thermodynamic equilibrium: Thermodynamic equi-

librium implies that the macroscopic quantities have
sufficient time to adjust to their changing surroundings.

In motion, exact thermodynamic equilibrium is impos-

sible as each fluid particle is continuously having vol-

ume, momentum or energy added or removed, and so in

fluid dynamics and heat transfer we speak of quasi-

equilibrium. The second law of thermodynamics im-

poses a tendency to revert to an equilibrium state, and

the defining issue here is whether or not the flow quan-

tities are adjusting fast enough. The reversion rate will

be very high if the molecular time and length scales are

very small as compared to the corresponding macro-

scopic-flow scales. This will guarantee that numerous

molecular collisions will occur in sufficiently short time

to equilibrate fluid particles whose properties vary little

over distances comparable to the molecular length

scales. The characteristic length for molecular collision

is the mean free path, L, the average distance traveled

by a molecule before colliding with another. When L is,

say, one order of magnitude smaller than the flow length

scale, macroscopic quantities such as velocity and tem-

perature will have nearly linear gradients over molecular

distances, and it is on these gradients alone that depar-

ture from equilibrium will depend. Therefore, the quasi-

equilibrium assumption signifies that the stress is linearly

related to the rate of strain (Newtonian fluids) and the

heat flux is linearly related to the temperature gradient

(Fourier fluids). Thermodynamic equilibrium addition-

ally gives rise to the no-slip and no-temperature-jump

boundary conditions [4,5].

As is the case with the continuum approximation, the

quasi-equilibrium assumption can be violated under

certain circumstances relevant to microdevices. In these

cases, alternatives to the no-slip condition or even to the

Navier–Stokes equations themselves must be sought.

We are now ready to quantify the conditions under

which the continuum approximation or the quasi-equi-

librium assumption can be made. The answer to both

questions is well known from statistical thermodynamics

particularly as was extensively applied to rarefied gas

dynamics half a century ago [5,6]. For that reason we

discuss gas flows first deferring the discussion of liquid

flows to afterward.

The well-known chart reproduced in Fig. 1 clearly

illustrates the answer we are seeking. All scales in this

plot are logarithmic. The bottom abscissa represents the

density normalized with a reference density, q=q0, or

equivalently the normalized number density (number of

molecules per unit volume), n=n0. The top abscissa is the

average distance between molecules normalized with the

molecular diameter, d=r. Clearly, the density ratio is

proportional to the inverse cube of d=r. The left ordi-

nate represents a characteristic flow dimension, L, in

meter. This can be computed from a characteristic

macroscopic property, such as density, divided by the

absolute value of its gradient. The right ordinate is the

length scale normalized with the molecular diameter,
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Fig. 1. Effective limits of different flow models. Adapted from

Bird [6].
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L=r. The chart in Fig. 1 depicts a gas having a molecular

diameter of r ¼ 4� 10�10 m, which diameter very clo-

sely represents air modeled as rigid spheres. Similar

charts can be drawn for other gases.

The vertical line inserted in Fig. 1 represents the

boundary between dilute gas and dense one. Dilute gas

is to the left of this line where d=r > 7. For such gas,

intermolecular forces play no role and the molecules

spend most of their time in free flight between brief

collisions at which instances the molecules� direction and

speed abruptly change. Additionally, the probability of

more than two molecules colliding is minuscule. We then

speak of only binary collisions, and all the simplifica-

tions of the powerful kinetic theory of gases can be in-

voked when dealing with dilute gases. Dry air at

standard conditions has a pressure of 1.01� 105 N/m2,

temperature of 288 K, density ratio of 1, and d=r ¼ 9.

Standard air is therefore a dilute, ideal gas, but barely.

The gently sloped line in Fig. 1 indicates the limit of

molecular chaos. When averaging over many molecules

to compute macroscopic quantities, insignificant statis-

tical fluctuations occur when there is at least 100 mole-

cules to the side (L=d > 100), in other words when at

least 1 million molecules reside inside the smallest

macroscopic fluid volume of interest. Therefore, the

continuum approximation is valid only on top of that

line.

The steeper line in Fig. 1 indicates the boundary of

validity of the quasi-equilibrium assumption. This limit

is governed by the Knudsen number, Kn � L=L, which
is the ratio of the mean free path to the characteristic

macroscopic length. Navier–Stokes equations are valid

only if Kn < 0:1, although the no-slip condition de-

mands the stricter limit of Kn < 0:001. The mean free

path is proportional to n�1, and therefore the slope of

the quasi-equilibrium line, in the logarithmic plot, is

three times steeper than that of the molecular chaos line.

Much of that has been known since the classical exper-

iments conducted by Knudsen [7]. These experiments

have been recently repeated with great precision at the

US National Institute of Standards and Technology [8].

How does all that relate to microdevices? As density

is reduced, the gas changes from dense to dilute. As size

shrinks for a low-density gas, the Navier–Stokes equa-

tion fails first followed by a failure of the continuum

approximation. For a dense gas, a reverse trend is ob-

served as L is reduced: the continuum approximation

fails first followed by a failure of the quasi-equilibrium

assumption. Clearly, the continuum approximation and

the quasi-equilibrium assumption are two different

things. The two lines in Fig. 1 describing the two re-

spective limits meet only at a single point.

To give a concrete example, for air at 1 atm, slip

occurs if L < 100 lm, (stress)–(rate of strain) relation

becomes non-linear if L < 1 lm, and the continuum

approximation fails altogether if L < 0:4 lm. For air at

10�3 atm, slip occurs if L < 100 mm, (stress)–(rate of

strain) relation becomes non-linear if L < 1 mm, and the

continuum approximation fails if L < 4 lm. Light gases

such as helium will reach those limits at considerably

larger characteristic lengths. All of those conditions are

well within the operating ranges of microdevices. Thus,

there are circumstances when transport in microdevices

should not be modeled using the traditional equations.

We now turn our attention to liquid flows. The in-

compressible Navier–Stokes equations describe such

flows under most circumstances. Liquids, however, do

not have a well advanced molecular-based theory as that

for dilute gases. The concept of mean free path is not

very useful for liquids whose molecules are always in a

�collision� state. Therefore, the conditions under which a

liquid flow fails to be in quasi-equilibrium state, though

not uncommon, are not well defined. There is no

Knudsen number nor kinetic theory of liquids to guide

us through the maze. We do not know, from first prin-

ciples, the conditions under which the no-slip boundary

condition becomes inaccurate, or the point at which the

(stress)–(rate of strain) relation or the (heat flux)–(tem-

perature gradient) relation fails to be linear. Having said

that, numerous empirical observations indicate that

those simple relations that we take for granted occa-

sionally fail to accurately model liquid flows. For ex-

ample, it has been shown in rheological studies [9] that

non-Newtonian behavior commences when the strain

rate, _cc, approximately exceeds twice the molecular fre-

quency-scale
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Fig. 2. Molecular and continuum flow models. From Ref. [10].
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_cc ¼ ou
oy

P 2s�1 ð1Þ

where u is the longitudinal macroscopic velocity, y is the

normal coordinate, and s is the molecular time-scale

given by

s ¼ mr2

�

� �1=2

ð2Þ

where m is the molecular mass, and r and � are respec-

tively the characteristic length- and energy-scale for the

molecules. For ordinary liquids, such as water, flowing

in conventional devices, this time-scale is extremely

small and the threshold shear rate for the onset of non-

Newtonian behavior is therefore extraordinarily high.

For high-molecular-weight polymers, on the other hand,

m and r are both several orders of magnitude higher

than their respective values for water, and the linear

stress–strain relation breaks down at realistic values of

the shear rate. But even for ordinary liquids, several

recent experiments and molecular dynamics simulations

of channel flows in confined spaces indicate the presence

of perceptible slip and therefore the absence of thermo-

dynamic equilibrium [10].

The next step for both gas and liquid flows is to figure

out what to do if conventional modeling fails. For gases

at least, there are first-principles equations that give the

precise amount of slip or temperature jump to include in

case the Knudsen number exceeds the critical limit of

0.001. Higher-order equations such as those of Burnett

can replace the Navier–Stokes equations when Kn ex-

ceeds 0.1. Finally, if the continuum approximation fails

altogether, the fluid can be modeled as it really is, a

collection of molecules. There, one can use molecular

dynamics simulations (for liquids), Boltzmann equation

(for dilute gases), or direct simulations Monte Carlo
(also for dilute gases). Subject to their own limitations,

all the molecular-based models can also be used in lieu

of higher-order momentum and energy equations, i.e.

for non-equilibrium, continuum situations. All the

strategies listed here are schematically depicted in Fig. 2,

and discussed in greater details in Refs. [10–12], which in

turn cite numerous original publications.

In closing, neither L=d nor Kn appears as a natural

dimensionless parameter in the Navier–Stokes equa-

tions. Validity of these equations or even their boundary

conditions cannot therefore be ascertained from the di-

mensional analysis presented in [1,2]. The fallacy of that

analysis is in using the Navier–Stokes system as a

starting point and therefore providing a circular argu-

ment for their validity. Despite the number of case

studies and non-dimensional parameters offered by Drs.

Herwig and Hausner, the logic is faulty and the fact

remains that the continuum approximation is invalid for

L=d < 100, the no-slip boundary condition is invalid for

Kn > 0:001, and the Navier–Stokes system is invalid

for Kn > 0:1. Those are real restrictions that can readily

be encountered in real microdevices. To state that the

�same equations�, properly non-dimensionalized, should

be used for both micro and macrosystems is at a mini-

mum erroneous. No amount of non-dimensionalization

can change the fact that there are circumstances when

the Navier–Stokes equations with no-slip/no-tempera-

ture-jump boundary conditions should not be used to

describe transport phenomena in microdevices. And that

is what physics teaches us.

Professor Herwig first published his results in Zeit-

schrift f€uur Angewandte Mathematik und Mechanik

(ZAMM) [2], based on a plenary lecture he presented

during the 79th Annual Congress of the International

Association of Applied Mathematics and Mechanics

(Gesellschaft f€uur Angewandte Mathematik und Mecha-
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nik, GAMM), Z€uurich, Switzerland, 12–15 February

2001. His arguments were repeated in a paper co-au-

thored with O. Hausner and published in International

Journal of Heat and Mass Transfer [1]. I therefore felt

compelled to rebut Professor Herwig�s thesis in both

journals. Additional to the present Technical Note, my

comments are repeated in Ref. [13].
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